Environmental Health Perspectives
Vol. 31, pp. 45-52, 1979

Some Aspects on the Organization of
Microfilaments and Microtubules in
Relation to Nondisjunction

by Agneta Onfelt* and Claes Ramel*

Ome possible mechanism behind nondisjunction is a malfunctioning spindle. A defect or lack of spindle is
a criterion for c-mitosis. In chemical mutagenesis research the c-mitotic effect is a well known cytological
phenomemon, which can be induced by many different compounds. Pioneer work was performed during
the 1940’s by Ostergren and Levan, and their results and conciusions are briefly discussed. Since colchicine
can induce c-mitosis and c-meiosis, by definition, and nondisjunction, a correlation between these
phenomena is logical. The general importance of the spindle protein tubulin is considered and some new
data from the cell biology literature on spindle formation and function as welt as chromosome structure are
briefly summarized. This knowledge can be used to correlate cytological and biochemical parameters
among which ¢-mitosis and changes in sulfhydryl group metabolism after chemical treatment are the most

obvious ones.

To improve and evaluate test systems for non-
disjunction we need information on the biochemical
and structural basis for the mechanism of chromo-
some segregation. This is an attempt to put together
some information available in the literature with the
aim of recognizing the targets, i.e., molecules or
structures of importance in the disjunction process.
The action of colchicine and organic mercury is con-
sidered to be of principal interest. Some effects of
these compounds on the spindle and the chromo-
somes will be discussed.

Structure and Composition of
Spindle Fibers
Microtubules

It has been known since the early 1950s that spin-
dle fibers have an organization which gives rise to
birefringence in polarized light. The structure behind
this organization and the basic entity in the composi-
tion of the spindle fibers most probably is the micro-
tubules (/). The molecular unit, which functions as
the primary building block for the microtubules is the
protein tubulin. This is present in two forms, «- and

*Environmental Toxicology Unit, Wallenberg Laboratory,
University of Stockholm, S-106 91 Stockholm, Sweden.

August 1979

A-tubulin. In most microtubules, these forms occur
in a 1:1 ratio, indicating that the functional unit is a
heterodimer (2). The assembly and disassembly of
microtubules has been studied also in vitre, which
has given an important insight in the microtubular
organization. These studies show that assembly re-
quires GTP and that polyanions like RNA as well as
calcium ions may inhibit assembly (Fig. 1).

At the cytological level, the microtubules were
previously difficult to visualize in the electron mi-
croscope, but altered fixation methods have made
this possible in recent years.

A new and important technique to study micro-
tubules in light microscope has been developed. This
isdone by a fluorescent labeling of antibodies against
tubulin. This immunofluorescence technique has
been used to study tubulin also in the spindle ap-
paratus.
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Figure 1. Some factors influencing microtubule assembly-
disassembly in vitro.
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Microfilaments

Beside microtubules, the spindle also contains
filamentlike structures, which are formed by actin
(3-5). It has been suggested on theoretical grounds
that myosin also should be present in these filaments
and the occurrence of myosin has indeed been re-
ported from studies of the spindle (6). Actin and

myosin are known as muscle proteins. Their pres- -

ence in the spindle apparatus indicates a possible
role in the chromosome movement and a force
generating mechanism similar to the one in muscles
has been suggested. There is, however, no clear
evidence of the mechanism involved in chromosome
movement. Although the important role of micro-
tubules in chromosome segregation can hardly be
questioned, there is less agreement about the rele-
vance of actin and myosin in this respect.

Filaments with actin and myosin occur in the
cleavage furrow (3, 6), Filament structures both in
spindle fibers and cleavage furrows are seldom seen
in ¢lectron micrographs, probably because osmium
tetroxide disrupts them (4). It has not been shown if
microtubuies can be chemically bound to microfila-
ments though a functional interaction has been found
in cell growth regulation (7, 8).

Microtubule-Associated Proteins (MAP)

When microtubules are isolated and purified forin
vitro studies some other proteins of interest usually
follow along in the purification (9-71). These proteins
are called microtubule-associated proteins (MAP).
They have the ability to facilitate in vitro poly-
merization of microtubules. This does not seem to be
a catalytic process, but MAP are incorporated
stoichiometrically. One of these protecins has been
localized to cytoplasmic structures as well as the
spindle with immunofluorescence technique (/0).

It has been suggested that this type of accessory
proteins have something to do with differentiation
within the microtubular population of the cell (/7).
There is in fact, a heterogeneity in microtubular
composition, which is not unexpected, considering
the wide variety of cellular processes dependent on
these structures (/2). The proteins in microtubules
and microfilaments, tubulin, actin, and myosin, are
subjected to some variation in their amino acid com-
position (2, 13). The designations tubulin, actin, and
myosin therefore refer to three groups of proteins.
However, the biochemical relationship between the
variants within each group is very close.

Cytoskeleton

Microtubules and microfilaments are found in the
cytoplasm as a regular network, often referred to as
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the cytoskeleton. This network is depolymerized
before the mitotic spindle is organized (14).

The cytoskeleton has been subjected to a series of
studies during recent years. An interesting and im-
portant outcome of these studies concerns the effect
on the cytoskeleton network by cellular transforma-
tion. Extensive comparative studies on normal and
transformed cells revealed that transformed cells
have altered microtubule and microfilament organi-
zation (/4, 15). Although these cells seem to have a
normal mitosis, a subtle correlation between the type
of transformation and the degree of heteroploidy
cannot be ruled out, considering the differences be-
tween transformed and normal cells in the micro-
tubule-microfitament organization, some caution
may be justified in drawing conclusions from estab-
lished cell lines, which are transformed in one way or
another. We do not know whether these differences
between normal and transformed cells may have
some relevance considering the regulation of spindle
formation and sensitivity to chemicals.

The correlation between transformation and an
alteration of the cytoskeleton network indicates that
the studies of the cellular units involved in the spin-
dle formation and chromosome segregation may
have a wider relevance than could have been fore-
seen a few years ago.

Microtubules and Microfilaments
in the Spindle and the Cleavage
Furrow

As mentioned above, cytoplasmic microtubules
disassemble before the spindle is formed. Poly-
merization and arrangement of spindle microtubules
then proceeds in a complex way, where the cen-
trioles seem to play a minor or no organizing role at
all ({6, /7). Microtubules from each pole overlap in
the middle of the spindle body. Some microtubules’
may reach the opposite pole. Since microtubules
seem to have one end for assembly and show intrin-
si¢ polarity, the spindle fibers growing from opposite
poles may interact differently than microtubules
growing from the same pole (18).

Kinetochores have initiating sites for microtubular
polymertzation. This has been shown in experiments
where isolated chromosomes were used (/9). Recent
work also shows that tubulin readily binds to satellite
DNA in the presence of MAP. Since kinetochore
regions are rich in satellite DNA, the authors suggest’
that MAP have a role in microtubule assembly onto
kinetochores (20). Kinetochore fibers are different
from nonkinetochore fibers, as indicated by lower
sensitivity to changes in temperature 27, 22) and
treatment with chemicals like colchicine and col-
cemid {23). It is unknown if this heterogeneity among

Environmental Health Perspectives



spindie microtubules depends on intrinsic proper-
ties, or depends on something attached to them.

Anaphase separation of chromosomes can be di-
vided into two phases: firstly chromosome move-
ment towards the poles and secondly an elongation
of the spindle. Some cells seem to rely on only one
type of separation which can be either one. The
elongation has been suggested to depend. on lateral
interaction between nonkinetochore microtubules
overlapping in the middle of the. spindle body,
perhaps connected to each other by some crosslink-
ing molecules (24).

Forer found that anaphase movement in spindles
from Nephrotoma suturalis could be affected by ul-
traviolet microbeam Jirradiation without accom-
panying changes in birefringence and vice versa (24).
This has led to the conclusion that a force-generating
element probably exists which is composed of other
molecular species than microtubular proteins, which
in turn are considered as the birefringent part of the
spindle.

It is most often the movement of the chromosomes
towards the poles that has been suggested to rely on
contractile proteins. As mentioned above, there is no
proof for the significance of contractile proteins in
chromesome movement. There are hypotheses
which impose no rele for contractile proteins:
hypotheses based on lateral microtubular interac-
tions combined with changes in the rate of
assembly-disassembly reactions (/8, 25).

Some experiments with the purpose of resolving
the mechanism with the use of antibodies have been
performed. In one of these experiments, anaphase
movement was not inhibited with antibodies to
myosin masking the actin-myosin interaction site of
myosin (26). This probably rules out an acto-
myosin-dependent anaphase movement. The same
antibodies blocked cytokinesis, indicating that con-
traction in the cleavage furrow is actomyosin-
dependent (26). 1t should be pointed out that recent
findings indicate that actin may form contractile
structures in cytoplasm without myosin and the
myosin site of actin is not involved in these struc-
tures (27, 28). Therefore the role of actin itself in
anaphase movement cannot be ruled out.

Antibodies to dynein, a microtubule associated
protein found in c¢ilia, seem to block anaphase
movement (29). In cilia dynein is known to interact
with microtubules in a sliding-filament mechanism
important to cilium motion (30). This finding may
support the hypotheses postulating that anaphase
movement has a part which is dependent on interac-
tions between microtubules, yet much work remains
to be done before any choice among the existing
models can be done.
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Chemically Induced C-Mitosis

Ostergren and Levan in the 1940s showed on root
tip of Allium cepa that a lot of different organic
chemicals can induce c-mitotic effects (3/). When
comparing these chemicals they found a relationship
between water solubility and lowest effective dose
(Fig. 2).

These findings indicate the existence of a common
mechanism for induction of c-mitotic effects for
many different chemicals. This effect may be re-
garded as unspecific, in the sense that no single
target molecule necessarily is involved. Instead the
effect can be referred to physicochemical interac-
tions of a more unspecific kind. Some compounds,
however, do not it the regression line. These com-
pounds have a lower threshold value for c-mitotic
effects than would be expected from their water sol-
ubility. This indicates a more specific action on the
cell division process. Among these chemicals with a
more specific effect we find organic heavy metal
compounds and colchicine.

Colchicine

Colchicine is assumed to have high binding
specificity to tubulin (34). Therefore it is widely used
asa tool for studies on processes where microtubules
are involved. Wilson et al. have been able to show
the probable mechanism for colchicine action on
microtubules (72, 35). The effect is substoichiomet-
ric, showing that very few colchicine molecules per
microtubule are required to inhibit assembly. It has
also been shown that colchicine cannot disrupt intact
microtubules unless those are in a state of simultane-
ous assembly and disassembly. Therefore when mi-
crotubules show different sensitivity to colchicine in
vivo this may reflect a difference in rates for the
dynamic equilibrium reactions. The mechanism
seems to be similar for compounds like vinblastine
and podophyllotoxin (/2).

Compounds Binding to Sulfhydryl Groups

The great importance of balance between sulfthy-
dryl groups and disulfide bonds in spindle formation
was suggested by Mazia et al. (36). Their hypothesis
was soon confirmed, and recent work shows that
tubuiin has about eight cysteine residues which are
important in microtubule formation (37).

In addition the assembly state of microtubules is
dependent on levels of reduced glutathione.
Diamide, probably a specific glutathione oxidizing
agent, causes microtubule depolymerization. This
has been shown for mitotic spindles as well as for
phagocytotic systems (38). Although a very complex
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Figure 2. Correlation between solubility and lowest concentration for c-mitosis for different organic
substances and heavy metals: (1) colchicine; (2) methylmercury dicyandiamide; (3) methylmercury
hydroxide; (4) phenylmercury hydroxide; (5) mercury chloride; (6) trimethyltin chloride; (7)
tributyltin chloride; (8) diethyllead chloride; (9} triethyllead chloride; (10) trimethyliead chloride; (11)
lead nitrate. From Ostergren (32) and Ramel (33 and unpublished).

relationship is indicated, the results show that
changes in levels of reduced and oxidized gluta-
thione are important biochemical parameters in re-
lation to microtubule disruption.

Some investigated heavy metal compounds are
plotted in Figure 2. Among these the organic com-
pounds are active at low dosages. At least the or-
ganic mercury compounds show great affinity to
sulfhydryl groups and therefore they are expected to
interfere with microtubule polymerization (39). This
can be done in different ways. The most obvious is
by binding directly to the sulfhydryl groups on tubu-
lin. Binding to reduced glutathione may give an indi-
rect effect upon microtubule assembly. In addition
inactivation of important enzymes cannot be ruled
out. When comparing effects of colchicine and or-
ganic mercury on Allium root tip mitosis one in-
teresting difference can be found. With colchicine an
increase in frequency of c-mitosis cells from a few
percent to 1009 comes within a narrow concentra-
tion interval. Methylmercury hydroxide, however,
gives a slower increase towards 100% (33). These
results probably can be brought back to a higher
target specificity for colchicine than for organic mer-

cury.
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Chromosome Pairing and Heterochromatin
Fusion

Colchicine has been shown to affect meiotic pair-
ing of homologous chromosomes. This was first
demonstrated in Allium and then work on Triticum,
Lilium and Secale has shown the same phenomenon
{#0-42). These findings implies a role for tubulin or
microtubules in meiotic pairing under the assump-
tion colchicine has specific affinity to tubulin.

In Lilium to get an effect on chromosome pairing
the treatment had to start before midzygoten. The
sensitive period is before nucleolar fusion which
starts in zygoten - pachyten in Lilium. The same is
valid for Triticum : the colchicine-sensitive period
regarding chromosome pairing is just before nucleo-
lar fusion in late G1.

Experiments performed with Secale show that,
apart from reduced chromosome pairing, the col-
chicine treatment also inhibits fusion of heterochro-
matin usually taking place in premeiotic interphase.
A microtubule dependent association of homologous
chromosomes before or in meiosis seems to involve
heterochromatic regions, e.g., the nucleolar or-
ganizing regions. Since these regions are considered
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rich in sateilite DNA it seems relevant to consider
the affinity found for MAP toe satellite DNA and the
hypothetical role of MAP as mediators of the DNA
tubulin contact (20).

In connection with this, certain observations on
the etiology of Down’s syndrome will be noted.
Chromosome 21 has a nucleolus organizer region. A
significantly higher satellite association was found
for chromosome 21 in somatic cells from parents to
children with Down's syndrome (43).

In addition, it has been shown that persistent nu-
cleoli in somatic cells is a deviation which may lead
to disjunction difficuities in anaphase {“4). These
results, taken together, indicate that heterochro-
matin fusion and satellite associations are important
cytological parameters. Changes in pattern for these
may be connected with increased probability for
nondisjunction.

Chromatin
Nonhistone Proteins

Among the most exciting recent findings are those
indicating that tubulin, actin and myosin belong to
the nonhistone proteins (NHP) in eukaryotic
chromosomes (¢5). The NHP fraction shows varia-
tion during cell cycle and is also different in different
cell types (45, 46). NHP have been suggested to have
gene regulative functions ¢5). However, some of
them may also fulfill structural tasks. Work recently
published by Laemmli’s group (47, 48) shows that
isolated metaphase chromosomes from HeLa cells
can be depleted of DNA and histones, but a protein
structure still remains. This structure looks like a
thin metaphase chromosome and is called scaffold
49). One of the proteins in this scaffold shows re-
semblance to B-tubulin.

Induced Excessive Chromosome Contraction

Colchicine treatment induces excessive chromo-
some contraction. Assuming that colchicine binds
specifically to tubulin, this effect indicates the ex-
istence of a tubulin or microtubule dependent part in
chromosome folding. .

However, according to Ostergren, excessive
chromosome contraction is found for every com-
pound giving c-mitosis (32). This indicates that ex-
cessive chromosome contraction is part of the com-
mon or unspecific effect induced by any chemical
given in a proper dose according to its water solubil-
ity. Still colchicine acts in a dose interval suggesting
itseffect on chromosomes involves a specific target.
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The Membrane — A Target for Specific and
Nonspecific Actions?

Without going into details, Ostergren has pointed
out the strong resemblance between the unspecific
mechanism behind c-mitosis induction, as defined
above, and nonspecific narcosis (32). He also stated
that the possible structure behind these phenomena
would be a lipoprotein complex with important
functions, like carrying enzymes or regulating per-
meability. In addition it has been suggested that the
membrane is the site of action for compounds giving
narcosis through a nonspecific mechanism (50).

Studies on phagocytosis indicate that a complex
interaction between cell membrane and cytoplasmic
microtubules causes the membrane alterations nec-
essary for phagocytosis. This interaction has been
suggested to invelve membrane bound tubulin (5/).
Nuclear membranes as well as cell membranes do
bind colchicine. Biochemical studies on Lilium
meiotic cells show that the main binding capacity is
located to the nuclear membrane and the soluble
cytoplasmic fraction (52). The hypothetical mecha-
nism suggested for membrane alterations in connec-
tion to phagocytosis is that membrane bound tubulin
increases locally with the aid of cytoplasmic micro-
tubuies. This may give rise to adifferent composition
of the cell membrane making it switable for
phagocytosis. In the meiotic cells of Lilium the nu-
clear membrane bound tubulinlike protein increases
inamount as the prophase proceeds. This increase is
tied to a change in the composition of the nuclear
membrane, In addition the main biochemical effect
of colchicine treatment in Lilium was inhibited
membrane association of a meiotic DNA-binding
protein.

Although it is impossible to suggest any mecha-
nism for colchicine action on the chromosomes,
these findings indicate the possible existence of col-
chicine sensitive alterations also in the nuclear
membrane, These alterations then might be of im-
portance to chromosome behavior. Thereby the
specific action on mitosis exerted by colchicine
would be closely related to the unspecific one ex-
erted by any chemical acting through a mechanism
related to unspecific narcosis.

SH Groups in Chromatin Folding

Some recent work in our own laboratory by Irena
Klasterska demonstrates that methylmercury
hydroxide also has a pronounced effect on chromatin
folding in meiotic cells of the grasshopper
Stethophyma grossum (53). The action of this com-
pound may be related to its affinity to sulfhydryl
groups. Such groups have been suggested to be of
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FI1GURE 3. S:rgphohymu gros'sum spermatocyte meiosis stained with modified C-band technique: (A) control; (B) from animal
injected with 8 X 10)* mg CHngO_H in Ringer solution. Testis fixed 72 hr after treatment. Bar: | pm.

great importance in chromatin folding (¢9). Accord-
ing to this hypothesis the folding process is con-
nected with a change of sulfhydryl groups to disul-
fide bonds. Histone 3 and nonhistone proteins are
suggested to be involved in this folding process. The
effect of methylmercury on the folding of the
chromatin may therefore be brought back to the
same mechanism as operating on the spindle fibers
that is, an interference with the oxidation of sulfhy-
dryl groups to disulfide bonds. Cells treated in a
stage with already contracted chromosomes can be
expected to show less disturbances than those
treated during the folding process. That has also
been verified by Klasterskd. Metaphase T chromo-
somes in cells fixed 2 hr after treatment showed no
effects on chromatin folding. On the other hand
metaphase I cells fixed 6 hr or later after treatment
showed gross disturbances in chromosome structure
(Fig. 3).

The concentrations used did not induce any ex-
cessive chromosome contraction neither in meiotic
nor in mitotic cells. However, the folding process of
the chromatin evidently was affected and in addition,
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the disturbance of chromatin folding in mitotic cells
was clearly weaker than the one in meotic cells. It is
not known if this difference in sensitivity reflects a
difference in chromosome organization. Further in-
vestigations may show if excessive chromosome
contraction and disturbed chromatin folding indeed
are interretated.

Working Hypothesis

Excessive chromosome contraction and spindle
disturbances (c-mitosis) can be induced by almost
any chemical given in a certain dose related to its
water solubility. A common mechanism for most
chemicals exists, and this mechanism may act via the
nuclear membrane and/or the cell membrane. Some
compounds, however, induce c-mitosis at much
lower dosages than their water solubility indicates.
These chemicals act on specific targets.

The use of coichicine as a specific microtubule
inhibitor reveals that microtubules may be important
in meiotic pairing, chromosome contraction as well
as spindle formation and function.
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Changes in pattern of satellite associations and
nucleolar behavior may be associated with increased
probability for nondisjunction.

Changes in levels of protein sulfhydryl groups and
reduced glutathione are important biochemical pa-
rameters in disjunction studies.

This work was supported by grants from the Swedish Natural
Research Council.

We gratefully acknowledge Figure 3 given to us by Dr. frena
Klasterska.
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